
websocket-client
Release 0.59.0

liris

May 05, 2021

INTRODUCTION:

1 Installation 1

2 Getting Started 3

3 Examples 5
3.1 Creating Your First WebSocket Connection . 5
3.2 Debug and Logging Options . 5
3.3 Connection Options . 6
3.4 Post-connection features . 11
3.5 Real-world Examples . 14

4 Threading 15

5 FAQ 17
5.1 Why is this library slow? . 17
5.2 How to solve the “connection is already closed” error? . 17
5.3 What’s going on with the naming of this library? . 17
5.4 Is WebSocket Compression using the permessage-deflate extension supported? 17
5.5 If a connection is re-establish after getting disconnected, does the new connection continue where the

previous one dropped off? . 18
5.6 How to disable ssl cert verification? . 18
5.7 How to disable hostname verification? . 18
5.8 How to enable SNI? . 19
5.9 Why don’t I receive all the server’s message(s)? . 19
5.10 Using Subprotocols . 19

6 Contributing 21

7 About 23

8 websocket/_abnf.py 25

9 websocket/_app.py 27

10 websocket/_core.py 29

11 websocket/_exceptions.py 31

12 websocket/_logging.py 33

13 websocket/_socket.py 35

i

14 websocket/_url.py 37

15 Indices and tables 39

ii

CHAPTER

ONE

INSTALLATION

First, install the following dependencies:

• six

• backports.ssl_match_hostname (only for Python 2.x)

To install the Python 2 dependencies, use: pip install six backports.ssl_match_hostname

To install the Python 3 dependencies, use: pip install six

You can use either python setup.py install or pip install websocket-client to install this li-
brary.

1

websocket-client, Release 0.59.0

2 Chapter 1. Installation

CHAPTER

TWO

GETTING STARTED

The quickest way to get started with this library is to use the wsdump.py script, found in the bin/ directory. For an
easy example, run the following:

python wsdump.py ws://echo.websocket.org/ -t "hello world"

The above command will provide you with an interactive terminal to communicate with the echo.websocket.org server.
This server will echo back any message you send it. You can test this WebSocket connection in your browser, without
this library, by visiting the URL https://websocket.org/echo.html.

The wsdump.py script has many additional options too, so it’s a great way to try using this library without writing any
custom code. The output of python wsdump.py -h is seen below, showing the additional options available.

python wsdump.py -h
usage: wsdump.py [-h] [-p PROXY] [-v [VERBOSE]] [-n] [-r]

[-s [SUBPROTOCOLS [SUBPROTOCOLS ...]]] [-o ORIGIN]
[--eof-wait EOF_WAIT] [-t TEXT] [--timings]
[--headers HEADERS]
ws_url

WebSocket Simple Dump Tool

positional arguments:
ws_url websocket url. ex. ws://echo.websocket.org/

optional arguments:
-h, --help show this help message and exit
-p PROXY, --proxy PROXY

proxy url. ex. http://127.0.0.1:8080
-v [VERBOSE], --verbose [VERBOSE]

set verbose mode. If set to 1, show opcode. If set to
2, enable to trace websocket module

-n, --nocert Ignore invalid SSL cert
-r, --raw raw output
-s [SUBPROTOCOLS [SUBPROTOCOLS ...]], --subprotocols [SUBPROTOCOLS [SUBPROTOCOLS ...

→˓]]
Set subprotocols

-o ORIGIN, --origin ORIGIN
Set origin

--eof-wait EOF_WAIT wait time(second) after 'EOF' received.
-t TEXT, --text TEXT Send initial text
--timings Print timings in seconds
--headers HEADERS Set custom headers. Use ',' as separator

3

https://github.com/websocket-client/websocket-client/tree/master/bin
https://websocket.org/echo.html

websocket-client, Release 0.59.0

4 Chapter 2. Getting Started

CHAPTER

THREE

EXAMPLES

3.1 Creating Your First WebSocket Connection

If you want to connect to a websocket without writing any code yourself, you can try out the Getting Started ws-
dump.py script and the examples/ directory files.

You can create your first custom connection with this library using one of the simple examples below. Note that the
first WebSocket example is best for a short-lived connection, while the WebSocketApp example is best for a long-lived
connection.

WebSocket example

import websocket

ws = websocket.WebSocket()
ws.connect("ws://echo.websocket.org")
ws.send("Hello, Server")
print(ws.recv())
ws.close()

WebSocketApp example

import websocket

def on_message(wsapp, message):
print(message)

wsapp = websocket.WebSocketApp("wss://stream.meetup.com/2/rsvps", on_message=on_
→˓message)
wsapp.run_forever()

3.2 Debug and Logging Options

When you’re first writing your code, you will want to make sure everything is working as you planned. The easiest
way to view the verbose connection information is the use websocket.enableTrace(True). For example, the
following example shows how you can verify that the proper Origin header is set.

import websocket

websocket.enableTrace(True)
ws = websocket.WebSocket()

(continues on next page)

5

https://github.com/websocket-client/websocket-client/tree/master/examples

websocket-client, Release 0.59.0

(continued from previous page)

ws.connect("ws://echo.websocket.org", origin="testing_websockets.com")
ws.send("Hello, Server")
print(ws.recv())
ws.close()

The output you will see will look something like this:

--- request header ---
GET / HTTP/1.1
Upgrade: websocket

Host: echo.websocket.org
Origin: testing123.com
Sec-WebSocket-Key: k9kFAUWNAMmf5OEMfTlOEA==
Sec-WebSocket-Version: 13
Connection: Upgrade

--- response header ---
HTTP/1.1 101 Web Socket Protocol Handshake
Access-Control-Allow-Credentials: true
Access-Control-Allow-Headers: content-type
Access-Control-Allow-Headers: authorization
Access-Control-Allow-Headers: x-websocket-extensions
Access-Control-Allow-Headers: x-websocket-version
Access-Control-Allow-Headers: x-websocket-protocol
Access-Control-Allow-Origin: testing123.com
Connection: Upgrade
Date: Sat, 06 Feb 2021 12:34:56 GMT
Sec-WebSocket-Accept: 4hNxSu7OllvQZJ43LGpQTuR8+QA=
Server: Kaazing Gateway
Upgrade: websocket

send: b'\x81\x8dS\xfb\xc3a\x1b\x9e\xaf\r<\xd7\xe326\x89\xb5\x04!'
Hello, Server
send: b'\x88\x82 \xc3\x85E#+'

3.3 Connection Options

After you can establish a basic WebSocket connection, customizing your connection using specific options is the next
step. Fortunately, this library provides many options you can configure, such as:

• “Host” header value

• “Cookie” header value

• “Origin” header value

• WebSocket subprotocols

• Custom headers

• SSL or hostname verification

• Timeout value

For a more detailed list of the options available for the different connection methods, check out the source code
comments for each:

6 Chapter 3. Examples

websocket-client, Release 0.59.0

• WebSocket().connect() option docs

– Related: WebSocket.create_connection() option docs

• WebSocketApp() option docs

– Related: WebSocketApp.run_forever docs

3.3.1 Setting Common Header Values

To modify the Host, Origin, Cookie, or Sec-WebSocket-Protocol header values of the WebSocket hand-
shake request, pass the host, origin, cookie, or subprotocols options to your WebSocket connection. The
first two examples show the Host, Origin, and Cookies headers being set, while the Sec-WebSocket-Protocol header
is set separately in the following example. For debugging, remember that it is helpful to enable Debug and Logging
Options.

WebSocket common headers example

import websocket

ws = websocket.WebSocket()
ws.connect("ws://echo.websocket.org", cookie="chocolate",

origin="testing_websockets.com", host="echo.websocket.org/websocket-client-test")

WebSocketApp common headers example

import websocket

def on_message(wsapp, message):
print(message)

wsapp = websocket.WebSocketApp("wss://stream.meetup.com/2/rsvps",
cookie="chocolate", on_message=on_message)

wsapp.run_forever(origin="testing_websockets.com", host="127.0.0.1")

WebSocket subprotocols example

import websocket

ws = websocket.WebSocket()
ws.connect("wss://ws.kraken.com", subprotocols=["testproto"])

WebSocketApp subprotocols example

import websocket

def on_message(wsapp, message):
print(message)

wsapp = websocket.WebSocketApp("wss://ws.kraken.com",
subprotocols=["testproto"], on_message=on_message)

wsapp.run_forever()

3.3. Connection Options 7

https://websocket-client.readthedocs.io/en/latest/core.html#websocket._core.WebSocket.connect
https://websocket-client.readthedocs.io/en/latest/core.html#websocket._core.create_connection
https://websocket-client.readthedocs.io/en/latest/app.html#websocket._app.WebSocketApp.__init__
https://websocket-client.readthedocs.io/en/latest/app.html#websocket._app.WebSocketApp.run_forever

websocket-client, Release 0.59.0

3.3.2 Suppress Origin Header

There is a special suppress_origin option that can be used to remove the Origin header from connection
handshake requests. The below examples illustrate how this can be used. For debugging, remember that it is helpful
to enable Debug and Logging Options.

WebSocket suppress origin example

import websocket

ws = websocket.WebSocket()
ws.connect("ws://echo.websocket.org", suppress_origin=True)

WebSocketApp suppress origin example

import websocket

def on_message(wsapp, message):
print(message)

wsapp = websocket.WebSocketApp("wss://stream.meetup.com/2/rsvps",
on_message=on_message)

wsapp.run_forever(suppress_origin=True)

3.3.3 Setting Custom Header Values

Setting custom header values, other than Host, Origin, Cookie, or Sec-WebSocket-Protocol (which are
addressed above), in the WebSocket handshake request is similar to setting common header values. Use the header
option to provide custom header values in a list or dict. For debugging, remember that it is helpful to enable Debug
and Logging Options.

WebSocket custom headers example

import websocket

ws = websocket.WebSocket()
ws.connect("ws://echo.websocket.org",

header={"CustomHeader1":"123", "NewHeader2":"Test"})

WebSocketApp custom headers example

import websocket

def on_message(wsapp, message):
print(message)

wsapp = websocket.WebSocketApp("wss://stream.meetup.com/2/rsvps",
header={"CustomHeader1":"123", "NewHeader2":"Test"}, on_message=on_message)

wsapp.run_forever()

8 Chapter 3. Examples

websocket-client, Release 0.59.0

3.3.4 Disabling SSL or Hostname Verification

See the relevant FAQ page for instructions.

3.3.5 Using a Custom Class

You can also write your own class for the connection, if you want to handle the nitty-gritty connection details yourself.

import socket
from websocket import create_connection, WebSocket
class MyWebSocket(WebSocket):

def recv_frame(self):
frame = super().recv_frame()
print('yay! I got this frame: ', frame)
return frame

ws = create_connection("ws://echo.websocket.org/",
sockopt=((socket.IPPROTO_TCP, socket.TCP_NODELAY, 1),), class_

→˓=MyWebSocket)

3.3.6 Setting Timeout Value

The _socket.py file contains the functions setdefaulttimeout() and getdefaulttimeout(). These two
functions set the global _default_timeout value, which sets the socket timeout value (in seconds). These two
functions should not be confused with the similarly named settimeout() and gettimeout() functions found
in the _core.py file. With WebSocketApp, the run_forever() function gets assigned the timeout from getde-
faulttimeout(). When the timeout value is reached, the exception WebSocketTimeoutException is triggered by the
_socket.py send() and recv() functions. Additional timeout values can be found in other locations in this li-
brary, including the close() function of the WebSocket class and the create_connection() function of the
WebSocket class.

The WebSocket timeout example below shows how an exception is triggered after no response is received from the
server after 5 seconds.

WebSocket timeout example

import websocket

ws = websocket.WebSocket()
ws.connect("ws://echo.websocket.org", timeout=5)
#ws.send("Hello, Server") # Commented out to trigger WebSocketTimeoutException
print(ws.recv())
Program should end with a WebSocketTimeoutException

The WebSocketApp timeout example works a bit differently than the WebSocket example. Because WebSocketApp
handles long-lived connections, it does not timeout after a certain amount of time without receiving a message. Instead,
a timeout is triggered if no connection response is received from the server after the timeout interval (5 seconds in the
example below).

WebSocketApp timeout example

import websocket

def on_error(wsapp, err):
print("Got a an error: ", err)

(continues on next page)

3.3. Connection Options 9

https://github.com/websocket-client/websocket-client/blob/29c15714ac9f5272e1adefc9c99b83420b409f63/websocket/_app.py#L248
https://github.com/websocket-client/websocket-client/blob/29c15714ac9f5272e1adefc9c99b83420b409f63/websocket/_app.py#L248

websocket-client, Release 0.59.0

(continued from previous page)

websocket.setdefaulttimeout(5)
wsapp = websocket.WebSocketApp("ws://nexus-websocket-a.intercom.io",

on_error=on_error)
wsapp.run_forever()
Program should print a "timed out" error message

3.3.7 Connecting through a proxy

The example below show how to connect through a HTTP or SOCKS proxy. This library does support authentication
to a proxy using the http_proxy_auth parameter, which should be a tuple of the username and password. Be
aware that the current implementation of websocket-client uses the “CONNECT” method, and the proxy server must
allow the “CONNECT” method. For example, the squid proxy only allows the “CONNECT” method on HTTPS ports
by default. You may encounter problems if using SSL/TLS with your proxy.

WebSocket HTTP proxy example

import websocket

ws = websocket.WebSocket()
ws.connect("ws://echo.websocket.org",

http_proxy_host="127.0.0.1", http_proxy_port="8080", proxy_type="http")
ws.send("Hello, Server")
print(ws.recv())
ws.close()

WebSocket SOCKS4 (or SOCKS5) proxy example

import websocket

ws = websocket.WebSocket()
ws.connect("ws://echo.websocket.org",

http_proxy_host="127.0.0.1", http_proxy_port="8080", proxy_type="socks4")
ws.send("Hello, Server")
print(ws.recv())
ws.close()

WebSocketApp proxy example

Work in progress - coming soon

3.3.8 Using Unix Domain Sockets

You can also connect to a WebSocket server hosted on a unix domain socket. Just use the socket option when
creating your connection.

import socket
from websocket import create_connection
my_socket = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
my_socket.connect("/path/to/my/unix.socket")

ws = create_connection("ws://localhost/", # Dummy URL
socket = my_socket,
sockopt=((socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1),))

10 Chapter 3. Examples

https://wiki.squid-cache.org/Features/HTTPS#CONNECT_tunnel

websocket-client, Release 0.59.0

3.4 Post-connection features

You can see a summary of this library’s supported WebSocket features by either running the autobahn test suite against
this client, or by reviewing a recently run autobahn report, available as a .html file in the /compliance directory.

3.4.1 Ping/Pong Usage

The WebSocket specification defines ping and pong message opcodes as part of the protocol. These can serve as a way
to keep a long-lived connection active even if data is not being transmitted. However, if a blocking event is happening,
there may be some issues with ping/pong. The below examples demonstrate how ping and pong can be sent by this
library. You can get additional debugging information by using Wireshark to view the ping and pong messages being
sent. In order for Wireshark to identify the WebSocket protocol properly, it should observe the initial HTTP handshake
and the HTTP 101 response in cleartext (without encryption) - otherwise the WebSocket messages may be categorized
as TCP or TLS messages. For debugging, remember that it is helpful to enable Debug and Logging Options.

WebSocket ping/pong example

This example is best for a quick test where you want to check the effect of a ping, or where situations where you want
to customize when the ping is sent. This type of connection does not automatically respond to a “ping” with a “pong”.

import websocket

websocket.enableTrace(True)
ws = websocket.WebSocket()
ws.connect("ws://echo.websocket.org")
ws.ping()
ws.ping("This is an optional ping payload")
ws.pong()
ws.close()

WebSocketApp ping/pong example

This example, and run_forever() in general, is better for long-lived connections. If a server needs a regular ping
to keep the connection alive, this is probably the option you will want to use. The run_forever() function will
automatically send a “pong” when it receives a “ping”, per the specification.

import websocket

def on_message(wsapp, message):
print(message)

def on_ping(wsapp, message):
print("Got a ping!")

def on_pong(wsapp, message):
print("Got a pong! No need to respond")

wsapp = websocket.WebSocketApp("wss://stream.meetup.com/2/rsvps",
on_message=on_message, on_ping=on_ping, on_pong=on_pong)

wsapp.run_forever(ping_interval=60, ping_timeout=10, ping_payload="This is an
→˓optional ping payload")

3.4. Post-connection features 11

https://tools.ietf.org/html/rfc6455#section-5.5.2
https://tools.ietf.org/html/rfc6455#section-5.5.3
https://www.wireshark.org/

websocket-client, Release 0.59.0

3.4.2 Connection Close Status Codes

RFC6455 defines various status codes that can be used to identify the reason for a close frame ending a connection.
These codes are defined in the websocket/_abnf.py file. To view the code used to close a connection, you can enable
logging to view the status code information. You can also specify your own status code in the .close() function, as
seen in the examples below. Specifying a custom status code is necessary when using the custom status code values
between 3000-4999.

WebSocket close() status code example

import websocket

websocket.enableTrace(True)

ws = websocket.WebSocket()
ws.connect("ws://echo.websocket.org")
ws.send("Hello, Server")
print(ws.recv())
ws.close(websocket.STATUS_PROTOCOL_ERROR)
Alternatively, use ws.close(status=1002)

WebSocketApp close() status code example

import websocket

websocket.enableTrace(True)

def on_message(wsapp, message):
print(message)
wsapp.close(status=websocket.STATUS_PROTOCOL_ERROR)
Alternatively, use wsapp.close(status=1002)

wsapp = websocket.WebSocketApp("wss://stream.meetup.com/2/rsvps", on_message=on_
→˓message)
wsapp.run_forever(skip_utf8_validation=True)

3.4.3 Customizing frame mask

WebSocket frames use masking with a random value to add entropy. The masking value in websocket-client is nor-
mally set using os.urandom in the websocket/_abnf.py file. However, this value can be customized as you wish. One
use case, outlined in issue #473, is to set the masking key to a null value to make it easier to decode the messages
being sent and received. This is effectively the same as “removing” the mask, though the mask cannot be fully “re-
moved” because it is a part of the WebSocket frame. Tools such as Wireshark can automatically remove masking from
payloads to decode the payload message, but it may be easier to skip the demasking step in your custom project.

WebSocket custom masking key code example

import websocket

def zero_mask_key(_):
return "\x00\x00\x00\x00"

websocket.enableTrace(True)

ws = websocket.WebSocket()
ws.set_mask_key(zero_mask_key)

(continues on next page)

12 Chapter 3. Examples

https://tools.ietf.org/html/rfc6455#section-7.4
https://github.com/websocket-client/websocket-client/issues/473

websocket-client, Release 0.59.0

(continued from previous page)

ws.connect("ws://echo.websocket.org")
ws.send("Hello, Server")
print(ws.recv())
ws.close()

WebSocketApp custom masking key code example

import websocket

def zero_mask_key(_):
return "\x00\x00\x00\x00"

websocket.enableTrace(True)

def on_message(wsapp, message):
print(message)

wsapp = websocket.WebSocketApp("wss://stream.meetup.com/2/rsvps", on_message=on_
→˓message, get_mask_key=zero_mask_key)
wsapp.run_forever()

3.4.4 Customizing opcode

WebSocket frames contain an opcode, which defines whether the frame contains text data, binary data, or is a special
frame. The different opcode values are defined in RFC6455 section 11.8. Although the text opcode, 0x01, is the most
commonly used value, the websocket-client library makes it possible to customize which opcode is used.

WebSocket custom opcode code example

import websocket

websocket.enableTrace(True)

ws = websocket.WebSocket()
ws.connect("ws://echo.websocket.org")
ws.send("Hello, Server", websocket.ABNF.OPCODE_TEXT)
print(ws.recv())
ws.send("This is a ping", websocket.ABNF.OPCODE_PING)
ws.close()

WebSocketApp custom opcode code example

The WebSocketApp class contains different functions to handle different message opcodes. For instance, on_close,
on_ping, on_pong, on_cont_message. One drawback of the current implementation (as of May 2021) is the lack of
binary support for WebSocketApp, as noted by issue #351.

Work in progress - coming soon

3.4. Post-connection features 13

https://tools.ietf.org/html/rfc6455#section-11.8
https://github.com/websocket-client/websocket-client/issues/351

websocket-client, Release 0.59.0

3.5 Real-world Examples

Other projects that depend on websocket-client may be able to illustrate more complex use cases for this library. A list
of 600+ dependent projects is found on libraries.io, and a few of the projects using websocket-client are listed below:

• https://github.com/docker/compose

• https://github.com/apache/airflow

• https://github.com/docker/docker-py

• https://github.com/scrapinghub/slackbot

• https://github.com/slackapi/python-slack-sdk

• https://github.com/wee-slack/wee-slack

• https://github.com/aluzzardi/wssh/

• https://github.com/llimllib/limbo

• https://github.com/miguelgrinberg/python-socketio

• https://github.com/invisibleroads/socketIO-client

• https://github.com/s4w3d0ff/python-poloniex

• https://github.com/Ape/samsungctl

• https://github.com/xchwarze/samsung-tv-ws-api

• https://github.com/andresriancho/websocket-fuzzer

14 Chapter 3. Examples

https://libraries.io/pypi/websocket-client/dependents
https://github.com/docker/compose
https://github.com/apache/airflow
https://github.com/docker/docker-py
https://github.com/scrapinghub/slackbot
https://github.com/slackapi/python-slack-sdk
https://github.com/wee-slack/wee-slack
https://github.com/aluzzardi/wssh/
https://github.com/llimllib/limbo
https://github.com/miguelgrinberg/python-socketio
https://github.com/invisibleroads/socketIO-client
https://github.com/s4w3d0ff/python-poloniex
https://github.com/Ape/samsungctl
https://github.com/xchwarze/samsung-tv-ws-api
https://github.com/andresriancho/websocket-fuzzer

CHAPTER

FOUR

THREADING

Warning: The thread management documentation for this project is somewhat lacking. If asynchronous threading is a
critical part of you project, you may want to investigate a more robust solution.

Multithreading in the websocket-client library is handled using the threading module. You can see import
threading in some of this project’s code. The echoapp_client.py example. is a good illustration of how threading
can be used in the websocket-client library. Issue #496 indicates that websocket-client is not compatible with asyncio.
However, some simple use cases, such as asyncronously receiving data, may be a convenient place to use asyncio. The
following code snippet shows how asyncronous listening might be implemented.

async def mylisten(ws):
result = await asyncio.get_event_loop().run_in_executor(None, ws.recv)
return result

The enable_multithread variable is also a factor when handling multiple threads. When using Web-
SocketApp, enable_multithread is only set when ping_interval is set. When WebSocketApp is not used,
enable_multithread can be set to a user-specified value, and this value will determine the thread locking.

Further investigation into using the threading module is seen in issue #612 which illustrates on situation where
using the threading module can impact the observed behavior of this library. The first code example below does not
trigger the on_close() function, but the second code example does trigger the on_close() function. The highlighted rows
show the lines added exclusively in the second example. This threading approach is identical to the echoapp_client.py
example. However, further testing found that some WebSocket servers, such as ws://echo.websocket.org, do not trigger
the on_close() function.

NOT working on_close() example, without threading

import websocket

websocket.enableTrace(True)

def on_open(ws):
ws.send("hi")

def on_message(ws, message):
print(message)
ws.close()
print("Message received...")

def on_close(ws):
print(">>>>>>CLOSED")

wsapp = websocket.WebSocketApp("wss://api.bitfinex.com/ws/1", on_open=on_open, on_
→˓message=on_message, on_close=on_close)
wsapp.run_forever()

15

https://github.com/websocket-client/websocket-client/blob/master/examples/echoapp_client.py
https://github.com/websocket-client/websocket-client/issues/496
https://github.com/websocket-client/websocket-client/blob/7466b961f68bda3c17d2aa4701fd145abf3474ed/websocket/_app.py#L290
https://github.com/websocket-client/websocket-client/blob/7466b961f68bda3c17d2aa4701fd145abf3474ed/websocket/_core.py#L103
https://github.com/websocket-client/websocket-client/issues/612
https://github.com/websocket-client/websocket-client/blob/master/examples/echoapp_client.py
https://github.com/websocket-client/websocket-client/blob/master/examples/echoapp_client.py

websocket-client, Release 0.59.0

Working on_close() example, with threading

import websocket
import threading

websocket.enableTrace(True)

def on_open(ws):
ws.send("hi")

def on_message(ws, message):
def run(*args):

print(message)
ws.close()
print("Message received...")

threading.Thread(target=run).start()

def on_close(ws):
print(">>>>>>CLOSED")

wsapp = websocket.WebSocketApp("wss://api.bitfinex.com/ws/1", on_open=on_open, on_
→˓message=on_message, on_close=on_close)
wsapp.run_forever()

TODO: Add an example of using ws.recv() in a non-blocking manner, as asked in issue #416

In part because threading is hard, but also because this project has (until recently) lacked any threading documentation,
there are many issues on this topic, including:

• #562

• #580

• #591

16 Chapter 4. Threading

https://github.com/websocket-client/websocket-client/issues/416
https://github.com/websocket-client/websocket-client/issues/562
https://github.com/websocket-client/websocket-client/issues/580
https://github.com/websocket-client/websocket-client/issues/591

CHAPTER

FIVE

FAQ

5.1 Why is this library slow?

The send and validate_utf8 methods are very slow in pure Python. You can disable UTF8 validation in this
library (and receive a performance enhancement) with the skip_utf8_validation parameter. If you want to get
better performance, please install both numpy and wsaccel, and import them into your project files - these external
libraries will automatically be used when available. Note that wsaccel can sometimes cause other issues.

5.2 How to solve the “connection is already closed” error?

The WebSocketConnectionClosedException, which returns the message “Connection is already closed.”, occurs when
a WebSocket function such as send() or recv() is called but the WebSocket connection is already closed. One
way to handle exceptions in Python is by using a try/except statement, which allows you to control what your program
does if the WebSocket connection is closed when you try to use it. In order to properly carry out further functions
with your WebSocket connection after the connection has closed, you will need to reconnect the WebSocket, using
connect() or create_connection() (from the _core.py file). The WebSocketApp run_forever() func-
tion automatically tries to reconnect when the connection is lost.

5.3 What’s going on with the naming of this library?

To install this library, you use pip3 install websocket-client, while import websocket imports this
library, and PyPi lists the package as websocket_client. Why is it so confusing? To see the original issue about
the choice of import websocket, see issue #60 and to read about websocket-client vs. websocket_client, see
issue #147

5.4 Is WebSocket Compression using the permessage-deflate exten-
sion supported?

No, RFC 7692 for WebSocket Compression is unfortunately not supported by the websocket-client library at this
time. You can view the currently supported WebSocket features in the latest autobahn compliance HTML report,
found under the compliance folder. If you use the Sec-WebSocket-Extensions: permessage-deflate
header with websocket-client, you will probably encounter errors, such as the ones described in issue #314.

17

https://docs.python.org/3/tutorial/errors.html#handling-exceptions
https://github.com/websocket-client/websocket-client/issues/60
https://github.com/websocket-client/websocket-client/issues/147
https://tools.ietf.org/html/rfc7692
https://github.com/websocket-client/websocket-client/tree/master/compliance
https://github.com/websocket-client/websocket-client/tree/master/compliance

websocket-client, Release 0.59.0

5.5 If a connection is re-establish after getting disconnected, does
the new connection continue where the previous one dropped
off?

The answer to this question depends on how the WebSocket server handles new connections. If the server keeps a list
of recently dropped WebSocket connection sessions, then it may allow you to recontinue your WebSocket connection
where you left off before disconnecting. However, this requires extra effort from the server and may create security
issues. For these reasons it is rare to encounter such a WebSocket server. The server would need to identify each
connecting client with authentication and keep track of which data was received using a method like TCP’s SYN/ACK.
That’s a lot of overhead for a lightweight protocol! Both HTTP and WebSocket connections use TCP sockets, and
when a new WebSocket connection is created, it uses a new TCP socket. Therefore, at the TCP layer, the default
behavior is to give each WebSocket connection a separate TCP socket. This means the re-established connection after
a disconnect is the same as a completely new connection. Another way to think about this is: what should the server do
if you create two WebSocket connections from the same client to the same server? The easiest solution for the server is
to treat each connection separately, unless the WebSocket uses an authentication method to identify individual clients
connecting to the server.

5.6 How to disable ssl cert verification?

Set the sslopt to {"cert_reqs": ssl.CERT_NONE}. The same sslopt argument is provided for all examples
seen below.

WebSocketApp example

ws = websocket.WebSocketApp("wss://echo.websocket.org")
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})

create_connection example

ws = websocket.create_connection("wss://echo.websocket.org",
sslopt={"cert_reqs": ssl.CERT_NONE})

WebSocket example

ws = websocket.WebSocket(sslopt={"cert_reqs": ssl.CERT_NONE})
ws.connect("wss://echo.websocket.org")

5.7 How to disable hostname verification?

Please set sslopt to {"check_hostname": False}. (since v0.18.0)

WebSocketApp example

ws = websocket.WebSocketApp("wss://echo.websocket.org")
ws.run_forever(sslopt={"check_hostname": False})

create_connection example

ws = websocket.create_connection("wss://echo.websocket.org",
sslopt={"check_hostname": False})

18 Chapter 5. FAQ

websocket-client, Release 0.59.0

WebSocket example

ws = websocket.WebSocket(sslopt={"check_hostname": False})
ws.connect("wss://echo.websocket.org")

5.8 How to enable SNI?

SNI support is available for Python 2.7.9+ and 3.2+. It will be enabled automatically whenever possible.

5.9 Why don’t I receive all the server’s message(s)?

Depending on how long your connection exists, it can help to ping the server to keep the connection alive. See issue
#200 for possible solutions.

5.10 Using Subprotocols

The WebSocket RFC outlines the usage of subprotocols. The subprotocol can be specified as in the example below:

>>> ws = websocket.create_connection("ws://example.com/websocket",
subprotocols=["binary", "base64"])

5.8. How to enable SNI? 19

https://github.com/websocket-client/websocket-client/issues/200
https://github.com/websocket-client/websocket-client/issues/200
https://tools.ietf.org/html/rfc6455#section-1.9

websocket-client, Release 0.59.0

20 Chapter 5. FAQ

CHAPTER

SIX

CONTRIBUTING

Contributions are welcome! See this project’s contributing guidelines

21

https://github.com/websocket-client/websocket-client/blob/master/CONTRIBUTING.md

websocket-client, Release 0.59.0

22 Chapter 6. Contributing

CHAPTER

SEVEN

ABOUT

The websocket-client project was started in 2011, but experienced a slowdown in development in 2019-2020. The
original creator of this project was liris and the current maintainer (as of 2021) is engn33r. The project is in the
process of being rejuvenated, so any edits or suggestions are appreciated. No typo is too small for a pull request! See
the Contributing page for more info.

23

https://github.com/liris
https://github.com/engn33r

websocket-client, Release 0.59.0

24 Chapter 7. About

CHAPTER

EIGHT

WEBSOCKET/_ABNF.PY

The _abnf.py file

25

websocket-client, Release 0.59.0

26 Chapter 8. websocket/_abnf.py

CHAPTER

NINE

WEBSOCKET/_APP.PY

The _app.py file

27

websocket-client, Release 0.59.0

28 Chapter 9. websocket/_app.py

CHAPTER

TEN

WEBSOCKET/_CORE.PY

The _core.py file

29

websocket-client, Release 0.59.0

30 Chapter 10. websocket/_core.py

CHAPTER

ELEVEN

WEBSOCKET/_EXCEPTIONS.PY

The _exceptions.py file

31

websocket-client, Release 0.59.0

32 Chapter 11. websocket/_exceptions.py

CHAPTER

TWELVE

WEBSOCKET/_LOGGING.PY

The _logging.py file

33

websocket-client, Release 0.59.0

34 Chapter 12. websocket/_logging.py

CHAPTER

THIRTEEN

WEBSOCKET/_SOCKET.PY

The _socket.py file

35

websocket-client, Release 0.59.0

36 Chapter 13. websocket/_socket.py

CHAPTER

FOURTEEN

WEBSOCKET/_URL.PY

The _url.py file

37

websocket-client, Release 0.59.0

38 Chapter 14. websocket/_url.py

CHAPTER

FIFTEEN

INDICES AND TABLES

• genindex

• modindex

39

	Installation
	Getting Started
	Examples
	Creating Your First WebSocket Connection
	Debug and Logging Options
	Connection Options
	Post-connection features
	Real-world Examples

	Threading
	FAQ
	Why is this library slow?
	How to solve the “connection is already closed” error?
	What’s going on with the naming of this library?
	Is WebSocket Compression using the permessage-deflate extension supported?
	If a connection is re-establish after getting disconnected, does the new connection continue where the previous one dropped off?
	How to disable ssl cert verification?
	How to disable hostname verification?
	How to enable SNI?
	Why don’t I receive all the server’s message(s)?
	Using Subprotocols

	Contributing
	About
	websocket/_abnf.py
	websocket/_app.py
	websocket/_core.py
	websocket/_exceptions.py
	websocket/_logging.py
	websocket/_socket.py
	websocket/_url.py
	Indices and tables

